HackRF-Treasure-Chest/Software/portapack-mayhem/hackrf/host/hackrf-tools/src/hackrf_debug.c

652 lines
18 KiB
C
Raw Normal View History

2022-09-22 18:26:57 +02:00
/*
* Copyright 2012 Jared Boone <jared@sharebrained.com>
* Copyright 2013 Benjamin Vernoux <titanmkd@gmail.com>
* Copyright 2017 Dominic Spill <dominicgs@gmail.com>
*
* This file is part of HackRF.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include <hackrf.h>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <getopt.h>
#ifndef bool
typedef int bool;
#define true 1
#define false 0
#endif
#define REGISTER_INVALID 32767
int parse_int(char* s, uint32_t* const value) {
uint_fast8_t base = 10;
char* s_end;
long long_value;
if( strlen(s) > 2 ) {
if( s[0] == '0' ) {
if( (s[1] == 'x') || (s[1] == 'X') ) {
base = 16;
s += 2;
} else if( (s[1] == 'b') || (s[1] == 'B') ) {
base = 2;
s += 2;
}
}
}
s_end = s;
long_value = strtol(s, &s_end, base);
if( (s != s_end) && (*s_end == 0) ) {
*value = (uint32_t)long_value;
return HACKRF_SUCCESS;
} else {
return HACKRF_ERROR_INVALID_PARAM;
}
}
int max2837_read_register(hackrf_device* device, const uint16_t register_number) {
uint16_t register_value;
int result = hackrf_max2837_read(device, (uint8_t)register_number, &register_value);
if( result == HACKRF_SUCCESS ) {
printf("[%2d] -> 0x%03x\n", register_number, register_value);
} else {
printf("hackrf_max2837_read() failed: %s (%d)\n", hackrf_error_name(result), result);
}
return result;
}
int max2837_read_registers(hackrf_device* device) {
uint16_t register_number;
int result = HACKRF_SUCCESS;
for(register_number=0; register_number<32; register_number++) {
result = max2837_read_register(device, register_number);
if( result != HACKRF_SUCCESS ) {
break;
}
}
return result;
}
int max2837_write_register(
hackrf_device* device,
const uint16_t register_number,
const uint16_t register_value
) {
int result = HACKRF_SUCCESS;
result = hackrf_max2837_write(device, (uint8_t)register_number, register_value);
if( result == HACKRF_SUCCESS ) {
printf("0x%03x -> [%2d]\n", register_value, register_number);
} else {
printf("hackrf_max2837_write() failed: %s (%d)\n", hackrf_error_name(result), result);
}
return result;
}
int si5351c_read_register(hackrf_device* device, const uint16_t register_number) {
uint16_t register_value;
int result = hackrf_si5351c_read(device, register_number, &register_value);
if( result == HACKRF_SUCCESS ) {
printf("[%3d] -> 0x%02x\n", register_number, register_value);
} else {
printf("hackrf_si5351c_read() failed: %s (%d)\n", hackrf_error_name(result), result);
}
return result;
}
int si5351c_read_registers(hackrf_device* device) {
uint16_t register_number;
int result = HACKRF_SUCCESS;
for(register_number=0; register_number<256; register_number++) {
result = si5351c_read_register(device, register_number);
if( result != HACKRF_SUCCESS ) {
break;
}
}
return result;
}
int si5351c_write_register(
hackrf_device* device,
const uint16_t register_number,
const uint16_t register_value
) {
int result = HACKRF_SUCCESS;
result = hackrf_si5351c_write(device, register_number, register_value);
if( result == HACKRF_SUCCESS ) {
printf("0x%2x -> [%3d]\n", register_value, register_number);
} else {
printf("hackrf_max2837_write() failed: %s (%d)\n", hackrf_error_name(result), result);
}
return result;
}
#define SI5351C_CLK_POWERDOWN (1<<7)
#define SI5351C_CLK_INT_MODE (1<<6)
#define SI5351C_CLK_PLL_SRC (1<<5)
#define SI5351C_CLK_INV (1<<4)
#define SI5351C_CLK_SRC_XTAL 0
#define SI5351C_CLK_SRC_CLKIN 1
#define SI5351C_CLK_SRC_MULTISYNTH_0_4 2
#define SI5351C_CLK_SRC_MULTISYNTH_SELF 3
void print_clk_control(uint16_t clk_ctrl) {
uint8_t clk_src, clk_pwr;
printf("\tclock control = \n");
if(clk_ctrl & SI5351C_CLK_POWERDOWN)
printf("\t\tPower Down\n");
else
printf("\t\tPower Up\n");
if(clk_ctrl & SI5351C_CLK_INT_MODE)
printf("\t\tInt Mode\n");
else
printf("\t\tFrac Mode\n");
if(clk_ctrl & SI5351C_CLK_PLL_SRC)
printf("\t\tPLL src B\n");
else
printf("\t\tPLL src A\n");
if(clk_ctrl & SI5351C_CLK_INV)
printf("\t\tInverted\n");
clk_src = (clk_ctrl >> 2) & 0x3;
switch (clk_src) {
case 0:
printf("\t\tXTAL\n");
break;
case 1:
printf("\t\tCLKIN\n");
break;
case 2:
printf("\t\tMULTISYNTH 0 4\n");
break;
case 3:
printf("\t\tMULTISYNTH SELF\n");
break;
}
clk_pwr = clk_ctrl & 0x3;
switch (clk_pwr) {
case 0:
printf("\t\t2 mA\n");
break;
case 1:
printf("\t\t4 mA\n");
break;
case 2:
printf("\t\t6 mA\n");
break;
case 3:
printf("\t\t8 mA\n");
break;
}
}
int si5351c_read_multisynth_config(hackrf_device* device, const uint_fast8_t ms_number) {
uint_fast8_t i, reg_base, reg_number;
uint16_t parameters[8], clk_control;
uint32_t p1,p2,p3,r_div;
uint_fast8_t div_lut[] = {1,2,4,8,16,32,64,128};
int result;
printf("MS%d:", ms_number);
result = hackrf_si5351c_read(device, 16+ms_number, &clk_control);
if( result != HACKRF_SUCCESS ) {
return result;
}
print_clk_control(clk_control);
if(ms_number <6){
reg_base = 42 + (ms_number * 8);
for(i=0; i<8; i++) {
reg_number = reg_base + i;
result = hackrf_si5351c_read(device, reg_number, &parameters[i]);
if( result != HACKRF_SUCCESS ) {
return result;
}
}
p1 = ((parameters[2] & 0x03) << 16)
| (parameters[3] << 8)
| parameters[4];
p2 = ((parameters[5] & 0x0F) << 16)
| (parameters[6] << 8)
| parameters[7];
p3 = ((parameters[5] & 0xF0) << 12)
| (parameters[0] << 8)
| parameters[1];
r_div = (parameters[2] >> 4) & 0x7;
printf("\tp1 = %u\n", p1);
printf("\tp2 = %u\n", p2);
printf("\tp3 = %u\n", p3);
if(p3)
printf("\tOutput (800Mhz PLL): %#.10f Mhz\n", ((double)800 / (double)(((double)p1*p3 + p2 + 512*p3)/(double)(128*p3))) / div_lut[r_div] );
} else {
// MS6 and 7 are integer only
unsigned int parms;
reg_base = 90;
for(i=0; i<3; i++) {
uint_fast8_t reg_number = reg_base + i;
int result = hackrf_si5351c_read(device, reg_number, &parameters[i]);
if( result != HACKRF_SUCCESS ) {
return result;
}
}
r_div = (ms_number == 6) ? parameters[2] & 0x7 : (parameters[2] & 0x70) >> 4 ;
parms = (ms_number == 6) ? parameters[0] : parameters[1];
printf("\tp1_int = %u\n", parms);
if(parms)
printf("\tOutput (800Mhz PLL): %#.10f Mhz\n", (800.0f / parms) / div_lut[r_div] );
}
printf("\toutput divider = %u\n", div_lut[r_div]);
return HACKRF_SUCCESS;
}
int si5351c_read_configuration(hackrf_device* device) {
uint_fast8_t ms_number;
int result;
for(ms_number=0; ms_number<8; ms_number++) {
result = si5351c_read_multisynth_config(device, ms_number);
if( result != HACKRF_SUCCESS ) {
return result;
}
}
return HACKRF_SUCCESS;
}
/*
* RFFC5071 and RFFC5072 are similar components with a compatible control
* interface. RFFC5071 was used on some early prototypes, so the libhackrf API
* calls are named that way. Because we use RFFC5072 on production hardware,
* we use that name here and present it to the user.
*/
int rffc5072_read_register(hackrf_device* device, const uint16_t register_number) {
uint16_t register_value;
int result = hackrf_rffc5071_read(device, (uint8_t)register_number, &register_value);
if( result == HACKRF_SUCCESS ) {
printf("[%2d] -> 0x%03x\n", register_number, register_value);
} else {
printf("hackrf_rffc5071_read() failed: %s (%d)\n", hackrf_error_name(result), result);
}
return result;
}
int rffc5072_read_registers(hackrf_device* device) {
uint16_t register_number;
int result = HACKRF_SUCCESS;
for(register_number=0; register_number<31; register_number++) {
result = rffc5072_read_register(device, register_number);
if( result != HACKRF_SUCCESS ) {
break;
}
}
return result;
}
int rffc5072_write_register(
hackrf_device* device,
const uint16_t register_number,
const uint16_t register_value
) {
int result = HACKRF_SUCCESS;
result = hackrf_rffc5071_write(device, (uint8_t)register_number, register_value);
if( result == HACKRF_SUCCESS ) {
printf("0x%03x -> [%2d]\n", register_value, register_number);
} else {
printf("hackrf_rffc5071_write() failed: %s (%d)\n", hackrf_error_name(result), result);
}
return result;
}
enum parts {
PART_NONE = 0,
PART_MAX2837 = 1,
PART_SI5351C = 2,
PART_RFFC5072 = 3,
};
int read_register(hackrf_device* device, uint8_t part,
const uint16_t register_number) {
switch (part) {
case PART_MAX2837:
return max2837_read_register(device, register_number);
case PART_SI5351C:
return si5351c_read_register(device, register_number);
case PART_RFFC5072:
return rffc5072_read_register(device, register_number);
}
return HACKRF_ERROR_INVALID_PARAM;
}
int read_registers(hackrf_device* device, uint8_t part) {
switch (part) {
case PART_MAX2837:
return max2837_read_registers(device);
case PART_SI5351C:
return si5351c_read_registers(device);
case PART_RFFC5072:
return rffc5072_read_registers(device);
}
return HACKRF_ERROR_INVALID_PARAM;
}
int write_register(hackrf_device* device, uint8_t part,
const uint16_t register_number,
const uint16_t register_value) {
switch (part) {
case PART_MAX2837:
return max2837_write_register(device, register_number, register_value);
case PART_SI5351C:
return si5351c_write_register(device, register_number, register_value);
case PART_RFFC5072:
return rffc5072_write_register(device, register_number, register_value);
}
return HACKRF_ERROR_INVALID_PARAM;
}
static const char * mode_name(uint32_t mode) {
const char *mode_names[] = {"IDLE", "WAIT", "RX", "TX_START", "TX_RUN"};
const uint32_t num_modes = sizeof(mode_names) / sizeof(mode_names[0]);
if (mode < num_modes)
return mode_names[mode];
else
return "UNKNOWN";
}
static const char * error_name(uint32_t error) {
const char *error_names[] = {"NONE", "RX_TIMEOUT", "TX_TIMEOUT"};
const uint32_t num_errors = sizeof(error_names) / sizeof(error_names[0]);
if (error < num_errors)
return error_names[error];
else
return "UNKNOWN";
}
static void print_state(hackrf_m0_state *state) {
printf("M0 state:\n");
printf("Requested mode: %u (%s) [%s]\n",
state->requested_mode, mode_name(state->requested_mode),
state->request_flag ? "pending" : "complete");
printf("Active mode: %u (%s)\n", state->active_mode, mode_name(state->active_mode));
printf("M0 count: %u bytes\n", state->m0_count);
printf("M4 count: %u bytes\n", state->m4_count);
printf("Number of shortfalls: %u\n", state->num_shortfalls);
printf("Longest shortfall: %u bytes\n", state->longest_shortfall);
printf("Shortfall limit: %u bytes\n", state->shortfall_limit);
printf("Mode change threshold: %u bytes\n", state->threshold);
printf("Next mode: %u (%s)\n", state->next_mode, mode_name(state->next_mode));
printf("Error: %u (%s)\n", state->error, error_name(state->error));
}
static void usage() {
printf("\nUsage:\n");
printf("\t-h, --help: this help\n");
printf("\t-n, --register <n>: set register number for read/write operations\n");
printf("\t-r, --read: read register specified by last -n argument, or all registers\n");
printf("\t-w, --write <v>: write register specified by last -n argument with value <v>\n");
printf("\t-c, --config: print SI5351C multisynth configuration information\n");
printf("\t-d, --device <s>: specify a particular device by serial number\n");
printf("\t-m, --max2837: target MAX2837\n");
printf("\t-s, --si5351c: target SI5351C\n");
printf("\t-f, --rffc5072: target RFFC5072\n");
printf("\t-S, --state: display M0 state\n");
printf("\t-T, --tx-underrun-limit <n>: set TX underrun limit in bytes (0 for no limit)\n");
printf("\t-R, --rx-overrun-limit <n>: set RX overrun limit in bytes (0 for no limit)\n");
printf("\t-u, --ui <1/0>: enable/disable UI\n");
printf("\nExamples:\n");
printf("\thackrf_debug --si5351c -n 0 -r # reads from si5351c register 0\n");
printf("\thackrf_debug --si5351c -c # displays si5351c multisynth configuration\n");
printf("\thackrf_debug --rffc5072 -r # reads all rffc5072 registers\n");
printf("\thackrf_debug --max2837 -n 10 -w 22 # writes max2837 register 10 with 22 decimal\n");
printf("\thackrf_debug --state # displays M0 state\n");
}
static struct option long_options[] = {
{ "config", no_argument, 0, 'c' },
{ "register", required_argument, 0, 'n' },
{ "write", required_argument, 0, 'w' },
{ "read", no_argument, 0, 'r' },
{ "device", no_argument, 0, 'd' },
{ "help", no_argument, 0, 'h' },
{ "max2837", no_argument, 0, 'm' },
{ "si5351c", no_argument, 0, 's' },
{ "rffc5072", no_argument, 0, 'f' },
{ "state", no_argument, 0, 'S' },
{ "tx-underrun-limit", required_argument, 0, 'T' },
{ "rx-overrun-limit", required_argument, 0, 'R' },
{ "ui", required_argument, 0, 'u' },
{ 0, 0, 0, 0 },
};
int main(int argc, char** argv) {
int opt;
uint32_t register_number = REGISTER_INVALID;
uint32_t register_value;
hackrf_device* device = NULL;
int option_index = 0;
bool read = false;
bool write = false;
bool dump_config = false;
bool dump_state = false;
uint8_t part = PART_NONE;
const char* serial_number = NULL;
bool set_ui = false;
uint32_t ui_enable;
uint32_t tx_limit;
uint32_t rx_limit;
bool set_tx_limit = false;
bool set_rx_limit = false;
int result = hackrf_init();
if(result) {
printf("hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result);
return EXIT_FAILURE;
}
while( (opt = getopt_long(argc, argv, "n:rw:d:cmsfST:R:h?u:", long_options, &option_index)) != EOF ) {
switch( opt ) {
case 'n':
result = parse_int(optarg, &register_number);
break;
case 'w':
write = true;
result = parse_int(optarg, &register_value);
break;
case 'r':
read = true;
break;
case 'c':
dump_config = true;
break;
case 'S':
dump_state = true;
break;
case 'T':
set_tx_limit = true;
result = parse_int(optarg, &tx_limit);
break;
case 'R':
set_rx_limit = true;
result = parse_int(optarg, &rx_limit);
break;
case 'd':
serial_number = optarg;
break;
case 'm':
if(part != PART_NONE) {
fprintf(stderr, "Only one part can be specified.'\n");
return EXIT_FAILURE;
}
part = PART_MAX2837;
break;
case 's':
if(part != PART_NONE) {
fprintf(stderr, "Only one part can be specified.'\n");
return EXIT_FAILURE;
}
part = PART_SI5351C;
break;
case 'f':
if(part != PART_NONE) {
fprintf(stderr, "Only one part can be specified.'\n");
return EXIT_FAILURE;
}
part = PART_RFFC5072;
break;
case 'u':
set_ui = true;
result = parse_int(optarg, &ui_enable);
break;
case 'h':
case '?':
usage();
return EXIT_SUCCESS;
default:
fprintf(stderr, "unknown argument '-%c %s'\n", opt, optarg);
usage();
return EXIT_FAILURE;
}
if(result != HACKRF_SUCCESS) {
printf("argument error: %s (%d)\n", hackrf_error_name(result), result);
usage();
return EXIT_FAILURE;
}
}
if(write && read) {
fprintf(stderr, "Read and write options are mutually exclusive.\n");
usage();
return EXIT_FAILURE;
}
if(write && dump_config) {
fprintf(stderr, "Config and write options are mutually exclusive.\n");
usage();
return EXIT_FAILURE;
}
if(dump_config && part != PART_SI5351C) {
fprintf(stderr, "Config option is only valid for SI5351C.\n");
usage();
return EXIT_FAILURE;
}
if(!(write || read || dump_config || dump_state || set_tx_limit || set_rx_limit || set_ui)) {
fprintf(stderr, "Specify read, write, or config option.\n");
usage();
return EXIT_FAILURE;
}
if(part == PART_NONE && !set_ui && !dump_state && !set_tx_limit && !set_rx_limit) {
fprintf(stderr, "Specify a part to read, write, or print config from.\n");
usage();
return EXIT_FAILURE;
}
result = hackrf_open_by_serial(serial_number, &device);
if(result) {
printf("hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result);
return EXIT_FAILURE;
}
if(write) {
result = write_register(device, part, register_number, register_value);
}
if(read) {
if(register_number == REGISTER_INVALID) {
result = read_registers(device, part);
} else {
result = read_register(device, part, register_number);
}
}
if(dump_config) {
si5351c_read_configuration(device);
}
if (set_tx_limit) {
result = hackrf_set_tx_underrun_limit(device, tx_limit);
if(result != HACKRF_SUCCESS) {
printf("hackrf_set_tx_underrun_limit() failed: %s (%d)\n", hackrf_error_name(result), result);
return EXIT_FAILURE;
}
}
if (set_rx_limit) {
result = hackrf_set_rx_overrun_limit(device, rx_limit);
if(result != HACKRF_SUCCESS) {
printf("hackrf_set_rx_overrun_limit() failed: %s (%d)\n", hackrf_error_name(result), result);
return EXIT_FAILURE;
}
}
if(dump_state) {
hackrf_m0_state state;
result = hackrf_get_m0_state(device, &state);
if(result != HACKRF_SUCCESS) {
printf("hackrf_get_m0_state() failed: %s (%d)\n", hackrf_error_name(result), result);
return EXIT_FAILURE;
}
print_state(&state);
}
if(set_ui) {
result = hackrf_set_ui_enable(device, ui_enable);
}
result = hackrf_close(device);
if(result) {
printf("hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result);
return EXIT_FAILURE;
}
hackrf_exit();
return EXIT_SUCCESS;
}