/* * Copyright 2012 Jared Boone * Copyright 2013 Benjamin Vernoux * Copyright 2017 Dominic Spill * * This file is part of HackRF. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include #include #include #include #include #ifndef bool typedef int bool; #define true 1 #define false 0 #endif #define REGISTER_INVALID 32767 int parse_int(char* s, uint32_t* const value) { uint_fast8_t base = 10; char* s_end; long long_value; if( strlen(s) > 2 ) { if( s[0] == '0' ) { if( (s[1] == 'x') || (s[1] == 'X') ) { base = 16; s += 2; } else if( (s[1] == 'b') || (s[1] == 'B') ) { base = 2; s += 2; } } } s_end = s; long_value = strtol(s, &s_end, base); if( (s != s_end) && (*s_end == 0) ) { *value = (uint32_t)long_value; return HACKRF_SUCCESS; } else { return HACKRF_ERROR_INVALID_PARAM; } } int max2837_read_register(hackrf_device* device, const uint16_t register_number) { uint16_t register_value; int result = hackrf_max2837_read(device, (uint8_t)register_number, ®ister_value); if( result == HACKRF_SUCCESS ) { printf("[%2d] -> 0x%03x\n", register_number, register_value); } else { printf("hackrf_max2837_read() failed: %s (%d)\n", hackrf_error_name(result), result); } return result; } int max2837_read_registers(hackrf_device* device) { uint16_t register_number; int result = HACKRF_SUCCESS; for(register_number=0; register_number<32; register_number++) { result = max2837_read_register(device, register_number); if( result != HACKRF_SUCCESS ) { break; } } return result; } int max2837_write_register( hackrf_device* device, const uint16_t register_number, const uint16_t register_value ) { int result = HACKRF_SUCCESS; result = hackrf_max2837_write(device, (uint8_t)register_number, register_value); if( result == HACKRF_SUCCESS ) { printf("0x%03x -> [%2d]\n", register_value, register_number); } else { printf("hackrf_max2837_write() failed: %s (%d)\n", hackrf_error_name(result), result); } return result; } int si5351c_read_register(hackrf_device* device, const uint16_t register_number) { uint16_t register_value; int result = hackrf_si5351c_read(device, register_number, ®ister_value); if( result == HACKRF_SUCCESS ) { printf("[%3d] -> 0x%02x\n", register_number, register_value); } else { printf("hackrf_si5351c_read() failed: %s (%d)\n", hackrf_error_name(result), result); } return result; } int si5351c_read_registers(hackrf_device* device) { uint16_t register_number; int result = HACKRF_SUCCESS; for(register_number=0; register_number<256; register_number++) { result = si5351c_read_register(device, register_number); if( result != HACKRF_SUCCESS ) { break; } } return result; } int si5351c_write_register( hackrf_device* device, const uint16_t register_number, const uint16_t register_value ) { int result = HACKRF_SUCCESS; result = hackrf_si5351c_write(device, register_number, register_value); if( result == HACKRF_SUCCESS ) { printf("0x%2x -> [%3d]\n", register_value, register_number); } else { printf("hackrf_max2837_write() failed: %s (%d)\n", hackrf_error_name(result), result); } return result; } #define SI5351C_CLK_POWERDOWN (1<<7) #define SI5351C_CLK_INT_MODE (1<<6) #define SI5351C_CLK_PLL_SRC (1<<5) #define SI5351C_CLK_INV (1<<4) #define SI5351C_CLK_SRC_XTAL 0 #define SI5351C_CLK_SRC_CLKIN 1 #define SI5351C_CLK_SRC_MULTISYNTH_0_4 2 #define SI5351C_CLK_SRC_MULTISYNTH_SELF 3 void print_clk_control(uint16_t clk_ctrl) { uint8_t clk_src, clk_pwr; printf("\tclock control = \n"); if(clk_ctrl & SI5351C_CLK_POWERDOWN) printf("\t\tPower Down\n"); else printf("\t\tPower Up\n"); if(clk_ctrl & SI5351C_CLK_INT_MODE) printf("\t\tInt Mode\n"); else printf("\t\tFrac Mode\n"); if(clk_ctrl & SI5351C_CLK_PLL_SRC) printf("\t\tPLL src B\n"); else printf("\t\tPLL src A\n"); if(clk_ctrl & SI5351C_CLK_INV) printf("\t\tInverted\n"); clk_src = (clk_ctrl >> 2) & 0x3; switch (clk_src) { case 0: printf("\t\tXTAL\n"); break; case 1: printf("\t\tCLKIN\n"); break; case 2: printf("\t\tMULTISYNTH 0 4\n"); break; case 3: printf("\t\tMULTISYNTH SELF\n"); break; } clk_pwr = clk_ctrl & 0x3; switch (clk_pwr) { case 0: printf("\t\t2 mA\n"); break; case 1: printf("\t\t4 mA\n"); break; case 2: printf("\t\t6 mA\n"); break; case 3: printf("\t\t8 mA\n"); break; } } int si5351c_read_multisynth_config(hackrf_device* device, const uint_fast8_t ms_number) { uint_fast8_t i, reg_base, reg_number; uint16_t parameters[8], clk_control; uint32_t p1,p2,p3,r_div; uint_fast8_t div_lut[] = {1,2,4,8,16,32,64,128}; int result; printf("MS%d:", ms_number); result = hackrf_si5351c_read(device, 16+ms_number, &clk_control); if( result != HACKRF_SUCCESS ) { return result; } print_clk_control(clk_control); if(ms_number <6){ reg_base = 42 + (ms_number * 8); for(i=0; i<8; i++) { reg_number = reg_base + i; result = hackrf_si5351c_read(device, reg_number, ¶meters[i]); if( result != HACKRF_SUCCESS ) { return result; } } p1 = ((parameters[2] & 0x03) << 16) | (parameters[3] << 8) | parameters[4]; p2 = ((parameters[5] & 0x0F) << 16) | (parameters[6] << 8) | parameters[7]; p3 = ((parameters[5] & 0xF0) << 12) | (parameters[0] << 8) | parameters[1]; r_div = (parameters[2] >> 4) & 0x7; printf("\tp1 = %u\n", p1); printf("\tp2 = %u\n", p2); printf("\tp3 = %u\n", p3); if(p3) printf("\tOutput (800Mhz PLL): %#.10f Mhz\n", ((double)800 / (double)(((double)p1*p3 + p2 + 512*p3)/(double)(128*p3))) / div_lut[r_div] ); } else { // MS6 and 7 are integer only unsigned int parms; reg_base = 90; for(i=0; i<3; i++) { uint_fast8_t reg_number = reg_base + i; int result = hackrf_si5351c_read(device, reg_number, ¶meters[i]); if( result != HACKRF_SUCCESS ) { return result; } } r_div = (ms_number == 6) ? parameters[2] & 0x7 : (parameters[2] & 0x70) >> 4 ; parms = (ms_number == 6) ? parameters[0] : parameters[1]; printf("\tp1_int = %u\n", parms); if(parms) printf("\tOutput (800Mhz PLL): %#.10f Mhz\n", (800.0f / parms) / div_lut[r_div] ); } printf("\toutput divider = %u\n", div_lut[r_div]); return HACKRF_SUCCESS; } int si5351c_read_configuration(hackrf_device* device) { uint_fast8_t ms_number; int result; for(ms_number=0; ms_number<8; ms_number++) { result = si5351c_read_multisynth_config(device, ms_number); if( result != HACKRF_SUCCESS ) { return result; } } return HACKRF_SUCCESS; } /* * RFFC5071 and RFFC5072 are similar components with a compatible control * interface. RFFC5071 was used on some early prototypes, so the libhackrf API * calls are named that way. Because we use RFFC5072 on production hardware, * we use that name here and present it to the user. */ int rffc5072_read_register(hackrf_device* device, const uint16_t register_number) { uint16_t register_value; int result = hackrf_rffc5071_read(device, (uint8_t)register_number, ®ister_value); if( result == HACKRF_SUCCESS ) { printf("[%2d] -> 0x%03x\n", register_number, register_value); } else { printf("hackrf_rffc5071_read() failed: %s (%d)\n", hackrf_error_name(result), result); } return result; } int rffc5072_read_registers(hackrf_device* device) { uint16_t register_number; int result = HACKRF_SUCCESS; for(register_number=0; register_number<31; register_number++) { result = rffc5072_read_register(device, register_number); if( result != HACKRF_SUCCESS ) { break; } } return result; } int rffc5072_write_register( hackrf_device* device, const uint16_t register_number, const uint16_t register_value ) { int result = HACKRF_SUCCESS; result = hackrf_rffc5071_write(device, (uint8_t)register_number, register_value); if( result == HACKRF_SUCCESS ) { printf("0x%03x -> [%2d]\n", register_value, register_number); } else { printf("hackrf_rffc5071_write() failed: %s (%d)\n", hackrf_error_name(result), result); } return result; } enum parts { PART_NONE = 0, PART_MAX2837 = 1, PART_SI5351C = 2, PART_RFFC5072 = 3, }; int read_register(hackrf_device* device, uint8_t part, const uint16_t register_number) { switch (part) { case PART_MAX2837: return max2837_read_register(device, register_number); case PART_SI5351C: return si5351c_read_register(device, register_number); case PART_RFFC5072: return rffc5072_read_register(device, register_number); } return HACKRF_ERROR_INVALID_PARAM; } int read_registers(hackrf_device* device, uint8_t part) { switch (part) { case PART_MAX2837: return max2837_read_registers(device); case PART_SI5351C: return si5351c_read_registers(device); case PART_RFFC5072: return rffc5072_read_registers(device); } return HACKRF_ERROR_INVALID_PARAM; } int write_register(hackrf_device* device, uint8_t part, const uint16_t register_number, const uint16_t register_value) { switch (part) { case PART_MAX2837: return max2837_write_register(device, register_number, register_value); case PART_SI5351C: return si5351c_write_register(device, register_number, register_value); case PART_RFFC5072: return rffc5072_write_register(device, register_number, register_value); } return HACKRF_ERROR_INVALID_PARAM; } static const char * mode_name(uint32_t mode) { const char *mode_names[] = {"IDLE", "WAIT", "RX", "TX_START", "TX_RUN"}; const uint32_t num_modes = sizeof(mode_names) / sizeof(mode_names[0]); if (mode < num_modes) return mode_names[mode]; else return "UNKNOWN"; } static const char * error_name(uint32_t error) { const char *error_names[] = {"NONE", "RX_TIMEOUT", "TX_TIMEOUT"}; const uint32_t num_errors = sizeof(error_names) / sizeof(error_names[0]); if (error < num_errors) return error_names[error]; else return "UNKNOWN"; } static void print_state(hackrf_m0_state *state) { printf("M0 state:\n"); printf("Requested mode: %u (%s) [%s]\n", state->requested_mode, mode_name(state->requested_mode), state->request_flag ? "pending" : "complete"); printf("Active mode: %u (%s)\n", state->active_mode, mode_name(state->active_mode)); printf("M0 count: %u bytes\n", state->m0_count); printf("M4 count: %u bytes\n", state->m4_count); printf("Number of shortfalls: %u\n", state->num_shortfalls); printf("Longest shortfall: %u bytes\n", state->longest_shortfall); printf("Shortfall limit: %u bytes\n", state->shortfall_limit); printf("Mode change threshold: %u bytes\n", state->threshold); printf("Next mode: %u (%s)\n", state->next_mode, mode_name(state->next_mode)); printf("Error: %u (%s)\n", state->error, error_name(state->error)); } static void usage() { printf("\nUsage:\n"); printf("\t-h, --help: this help\n"); printf("\t-n, --register : set register number for read/write operations\n"); printf("\t-r, --read: read register specified by last -n argument, or all registers\n"); printf("\t-w, --write : write register specified by last -n argument with value \n"); printf("\t-c, --config: print SI5351C multisynth configuration information\n"); printf("\t-d, --device : specify a particular device by serial number\n"); printf("\t-m, --max2837: target MAX2837\n"); printf("\t-s, --si5351c: target SI5351C\n"); printf("\t-f, --rffc5072: target RFFC5072\n"); printf("\t-S, --state: display M0 state\n"); printf("\t-T, --tx-underrun-limit : set TX underrun limit in bytes (0 for no limit)\n"); printf("\t-R, --rx-overrun-limit : set RX overrun limit in bytes (0 for no limit)\n"); printf("\t-u, --ui <1/0>: enable/disable UI\n"); printf("\nExamples:\n"); printf("\thackrf_debug --si5351c -n 0 -r # reads from si5351c register 0\n"); printf("\thackrf_debug --si5351c -c # displays si5351c multisynth configuration\n"); printf("\thackrf_debug --rffc5072 -r # reads all rffc5072 registers\n"); printf("\thackrf_debug --max2837 -n 10 -w 22 # writes max2837 register 10 with 22 decimal\n"); printf("\thackrf_debug --state # displays M0 state\n"); } static struct option long_options[] = { { "config", no_argument, 0, 'c' }, { "register", required_argument, 0, 'n' }, { "write", required_argument, 0, 'w' }, { "read", no_argument, 0, 'r' }, { "device", no_argument, 0, 'd' }, { "help", no_argument, 0, 'h' }, { "max2837", no_argument, 0, 'm' }, { "si5351c", no_argument, 0, 's' }, { "rffc5072", no_argument, 0, 'f' }, { "state", no_argument, 0, 'S' }, { "tx-underrun-limit", required_argument, 0, 'T' }, { "rx-overrun-limit", required_argument, 0, 'R' }, { "ui", required_argument, 0, 'u' }, { 0, 0, 0, 0 }, }; int main(int argc, char** argv) { int opt; uint32_t register_number = REGISTER_INVALID; uint32_t register_value; hackrf_device* device = NULL; int option_index = 0; bool read = false; bool write = false; bool dump_config = false; bool dump_state = false; uint8_t part = PART_NONE; const char* serial_number = NULL; bool set_ui = false; uint32_t ui_enable; uint32_t tx_limit; uint32_t rx_limit; bool set_tx_limit = false; bool set_rx_limit = false; int result = hackrf_init(); if(result) { printf("hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result); return EXIT_FAILURE; } while( (opt = getopt_long(argc, argv, "n:rw:d:cmsfST:R:h?u:", long_options, &option_index)) != EOF ) { switch( opt ) { case 'n': result = parse_int(optarg, ®ister_number); break; case 'w': write = true; result = parse_int(optarg, ®ister_value); break; case 'r': read = true; break; case 'c': dump_config = true; break; case 'S': dump_state = true; break; case 'T': set_tx_limit = true; result = parse_int(optarg, &tx_limit); break; case 'R': set_rx_limit = true; result = parse_int(optarg, &rx_limit); break; case 'd': serial_number = optarg; break; case 'm': if(part != PART_NONE) { fprintf(stderr, "Only one part can be specified.'\n"); return EXIT_FAILURE; } part = PART_MAX2837; break; case 's': if(part != PART_NONE) { fprintf(stderr, "Only one part can be specified.'\n"); return EXIT_FAILURE; } part = PART_SI5351C; break; case 'f': if(part != PART_NONE) { fprintf(stderr, "Only one part can be specified.'\n"); return EXIT_FAILURE; } part = PART_RFFC5072; break; case 'u': set_ui = true; result = parse_int(optarg, &ui_enable); break; case 'h': case '?': usage(); return EXIT_SUCCESS; default: fprintf(stderr, "unknown argument '-%c %s'\n", opt, optarg); usage(); return EXIT_FAILURE; } if(result != HACKRF_SUCCESS) { printf("argument error: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if(write && read) { fprintf(stderr, "Read and write options are mutually exclusive.\n"); usage(); return EXIT_FAILURE; } if(write && dump_config) { fprintf(stderr, "Config and write options are mutually exclusive.\n"); usage(); return EXIT_FAILURE; } if(dump_config && part != PART_SI5351C) { fprintf(stderr, "Config option is only valid for SI5351C.\n"); usage(); return EXIT_FAILURE; } if(!(write || read || dump_config || dump_state || set_tx_limit || set_rx_limit || set_ui)) { fprintf(stderr, "Specify read, write, or config option.\n"); usage(); return EXIT_FAILURE; } if(part == PART_NONE && !set_ui && !dump_state && !set_tx_limit && !set_rx_limit) { fprintf(stderr, "Specify a part to read, write, or print config from.\n"); usage(); return EXIT_FAILURE; } result = hackrf_open_by_serial(serial_number, &device); if(result) { printf("hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result); return EXIT_FAILURE; } if(write) { result = write_register(device, part, register_number, register_value); } if(read) { if(register_number == REGISTER_INVALID) { result = read_registers(device, part); } else { result = read_register(device, part, register_number); } } if(dump_config) { si5351c_read_configuration(device); } if (set_tx_limit) { result = hackrf_set_tx_underrun_limit(device, tx_limit); if(result != HACKRF_SUCCESS) { printf("hackrf_set_tx_underrun_limit() failed: %s (%d)\n", hackrf_error_name(result), result); return EXIT_FAILURE; } } if (set_rx_limit) { result = hackrf_set_rx_overrun_limit(device, rx_limit); if(result != HACKRF_SUCCESS) { printf("hackrf_set_rx_overrun_limit() failed: %s (%d)\n", hackrf_error_name(result), result); return EXIT_FAILURE; } } if(dump_state) { hackrf_m0_state state; result = hackrf_get_m0_state(device, &state); if(result != HACKRF_SUCCESS) { printf("hackrf_get_m0_state() failed: %s (%d)\n", hackrf_error_name(result), result); return EXIT_FAILURE; } print_state(&state); } if(set_ui) { result = hackrf_set_ui_enable(device, ui_enable); } result = hackrf_close(device); if(result) { printf("hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result); return EXIT_FAILURE; } hackrf_exit(); return EXIT_SUCCESS; }