228 lines
7.6 KiB
C
228 lines
7.6 KiB
C
/*
|
|
* Copyright 2012 Jared Boone
|
|
* Copyright 2013 Ben Gamari
|
|
*
|
|
* This file is part of HackRF.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; see the file COPYING. If not, write to
|
|
* the Free Software Foundation, Inc., 51 Franklin Street,
|
|
* Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include <stdint.h>
|
|
#include <stdbool.h>
|
|
#include <stddef.h>
|
|
#include <assert.h>
|
|
|
|
#include <libopencm3/cm3/cortex.h>
|
|
#include <libopencm3/cm3/sync.h>
|
|
|
|
#include "usb.h"
|
|
#include "usb_queue.h"
|
|
|
|
usb_queue_t* endpoint_queues[12] = {};
|
|
|
|
#define USB_ENDPOINT_INDEX(endpoint_address) (((endpoint_address & 0xF) * 2) + ((endpoint_address >> 7) & 1))
|
|
|
|
static usb_queue_t* endpoint_queue(
|
|
const usb_endpoint_t* const endpoint
|
|
) {
|
|
uint32_t index = USB_ENDPOINT_INDEX(endpoint->address);
|
|
if (endpoint_queues[index] == NULL) while (1);
|
|
return endpoint_queues[index];
|
|
}
|
|
|
|
void usb_queue_init(
|
|
usb_queue_t* const queue
|
|
) {
|
|
uint32_t index = USB_ENDPOINT_INDEX(queue->endpoint->address);
|
|
if (endpoint_queues[index] != NULL) while (1);
|
|
endpoint_queues[index] = queue;
|
|
|
|
usb_transfer_t* t = queue->free_transfers;
|
|
for (unsigned int i=0; i < queue->pool_size - 1; i++, t++) {
|
|
t->next = t+1;
|
|
t->queue = queue;
|
|
}
|
|
t->next = NULL;
|
|
t->queue = queue;
|
|
}
|
|
|
|
/* Allocate a transfer */
|
|
static usb_transfer_t* allocate_transfer(
|
|
usb_queue_t* const queue
|
|
) {
|
|
bool aborted;
|
|
usb_transfer_t* transfer;
|
|
if (queue->free_transfers == NULL)
|
|
return NULL;
|
|
|
|
do {
|
|
transfer = (void *) __ldrex((uint32_t *) &queue->free_transfers);
|
|
aborted = __strex((uint32_t) transfer->next, (uint32_t *) &queue->free_transfers);
|
|
} while (aborted);
|
|
transfer->next = NULL;
|
|
return transfer;
|
|
}
|
|
|
|
/* Place a transfer in the free list */
|
|
static void free_transfer(usb_transfer_t* const transfer)
|
|
{
|
|
usb_queue_t* const queue = transfer->queue;
|
|
bool aborted;
|
|
do {
|
|
transfer->next = (void *) __ldrex((uint32_t *) &queue->free_transfers);
|
|
aborted = __strex((uint32_t) transfer, (uint32_t *) &queue->free_transfers);
|
|
} while (aborted);
|
|
}
|
|
|
|
/* Add a transfer to the end of an endpoint's queue. Returns the old
|
|
* tail or NULL is the queue was empty
|
|
*/
|
|
static usb_transfer_t* endpoint_queue_transfer(
|
|
usb_transfer_t* const transfer
|
|
) {
|
|
usb_queue_t* const queue = transfer->queue;
|
|
transfer->next = NULL;
|
|
if (queue->active != NULL) {
|
|
usb_transfer_t* t = queue->active;
|
|
while (t->next != NULL) t = t->next;
|
|
t->next = transfer;
|
|
return t;
|
|
} else {
|
|
queue->active = transfer;
|
|
return NULL;
|
|
}
|
|
}
|
|
|
|
static void usb_queue_flush_queue(usb_queue_t* const queue)
|
|
{
|
|
cm_disable_interrupts();
|
|
while (queue->active) {
|
|
usb_transfer_t* transfer = queue->active;
|
|
queue->active = transfer->next;
|
|
free_transfer(transfer);
|
|
}
|
|
cm_enable_interrupts();
|
|
}
|
|
|
|
void usb_queue_flush_endpoint(const usb_endpoint_t* const endpoint)
|
|
{
|
|
usb_queue_flush_queue(endpoint_queue(endpoint));
|
|
}
|
|
|
|
int usb_transfer_schedule(
|
|
const usb_endpoint_t* const endpoint,
|
|
void* const data,
|
|
const uint32_t maximum_length,
|
|
const transfer_completion_cb completion_cb,
|
|
void* const user_data
|
|
) {
|
|
usb_queue_t* const queue = endpoint_queue(endpoint);
|
|
usb_transfer_t* const transfer = allocate_transfer(queue);
|
|
if (transfer == NULL) return -1;
|
|
usb_transfer_descriptor_t* const td = &transfer->td;
|
|
|
|
// Configure the transfer descriptor
|
|
td->next_dtd_pointer = USB_TD_NEXT_DTD_POINTER_TERMINATE;
|
|
td->total_bytes =
|
|
USB_TD_DTD_TOKEN_TOTAL_BYTES(maximum_length)
|
|
| USB_TD_DTD_TOKEN_IOC
|
|
| USB_TD_DTD_TOKEN_MULTO(0)
|
|
| USB_TD_DTD_TOKEN_STATUS_ACTIVE
|
|
;
|
|
td->buffer_pointer_page[0] = (uint32_t)data;
|
|
td->buffer_pointer_page[1] = ((uint32_t)data + 0x1000) & 0xfffff000;
|
|
td->buffer_pointer_page[2] = ((uint32_t)data + 0x2000) & 0xfffff000;
|
|
td->buffer_pointer_page[3] = ((uint32_t)data + 0x3000) & 0xfffff000;
|
|
td->buffer_pointer_page[4] = ((uint32_t)data + 0x4000) & 0xfffff000;
|
|
|
|
// Fill in transfer fields
|
|
transfer->maximum_length = maximum_length;
|
|
transfer->completion_cb = completion_cb;
|
|
transfer->user_data = user_data;
|
|
|
|
cm_disable_interrupts();
|
|
usb_transfer_t* tail = endpoint_queue_transfer(transfer);
|
|
if (tail == NULL) {
|
|
// The queue is currently empty, we need to re-prime
|
|
usb_endpoint_schedule_wait(queue->endpoint, &transfer->td);
|
|
} else {
|
|
// The queue is currently running, try to append
|
|
usb_endpoint_schedule_append(queue->endpoint, &tail->td, &transfer->td);
|
|
}
|
|
cm_enable_interrupts();
|
|
return 0;
|
|
}
|
|
|
|
int usb_transfer_schedule_block(
|
|
const usb_endpoint_t* const endpoint,
|
|
void* const data,
|
|
const uint32_t maximum_length,
|
|
const transfer_completion_cb completion_cb,
|
|
void* const user_data
|
|
) {
|
|
int ret;
|
|
do {
|
|
ret = usb_transfer_schedule(endpoint, data, maximum_length,
|
|
completion_cb, user_data);
|
|
} while (ret == -1);
|
|
return 0;
|
|
}
|
|
|
|
int usb_transfer_schedule_ack(
|
|
const usb_endpoint_t* const endpoint
|
|
) {
|
|
return usb_transfer_schedule_block(endpoint, 0, 0, NULL, NULL);
|
|
}
|
|
|
|
/* Called when an endpoint might have completed a transfer */
|
|
void usb_queue_transfer_complete(usb_endpoint_t* const endpoint)
|
|
{
|
|
usb_queue_t* const queue = endpoint_queue(endpoint);
|
|
if (queue == NULL) while(1); // Uh oh
|
|
usb_transfer_t* transfer = queue->active;
|
|
|
|
while (transfer != NULL) {
|
|
uint8_t status = transfer->td.total_bytes;
|
|
|
|
// Check for failures
|
|
if ( status & USB_TD_DTD_TOKEN_STATUS_HALTED
|
|
|| status & USB_TD_DTD_TOKEN_STATUS_BUFFER_ERROR
|
|
|| status & USB_TD_DTD_TOKEN_STATUS_TRANSACTION_ERROR) {
|
|
// TODO: Uh oh, do something useful here
|
|
while (1);
|
|
}
|
|
|
|
// Still not finished
|
|
if (status & USB_TD_DTD_TOKEN_STATUS_ACTIVE)
|
|
break;
|
|
|
|
// Advance the head. We need to do this before invoking the completion
|
|
// callback as it might attempt to schedule a new transfer
|
|
queue->active = transfer->next;
|
|
usb_transfer_t* next = transfer->next;
|
|
|
|
// Invoke completion callback
|
|
unsigned int total_bytes = (transfer->td.total_bytes & USB_TD_DTD_TOKEN_TOTAL_BYTES_MASK) >> USB_TD_DTD_TOKEN_TOTAL_BYTES_SHIFT;
|
|
unsigned int transferred = transfer->maximum_length - total_bytes;
|
|
if (transfer->completion_cb)
|
|
transfer->completion_cb(transfer->user_data, transferred);
|
|
|
|
// Advance head and free transfer
|
|
free_transfer(transfer);
|
|
transfer = next;
|
|
}
|
|
}
|