HackRF-Treasure-Chest/Software/portapack-mayhem/firmware/common/baseband_sgpio.cpp
2022-09-22 09:26:57 -07:00

393 lines
9.5 KiB
C++

/*
* Copyright (C) 2014 Jared Boone, ShareBrained Technology, Inc.
*
* This file is part of PortaPack.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; see the file COPYING. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street,
* Boston, MA 02110-1301, USA.
*/
#include "baseband_sgpio.hpp"
#include "baseband.hpp"
#include "utility.hpp"
namespace baseband {
/*
struct PinConfig {
P_OUT_CFG p_out_cfg;
P_OE_CFG p_oe_cfg { P_OE_CFG::GPIO_OE };
constexpr SGPIOPinConfig(
P_OUT_CFG p_out_cfg
) :
p_out_cfg(p_out_cfg)
{
}
};
static constexpr bool slice_mode_multislice = false;
static constexpr P_OUT_CFG output_multiplexing_mode =
slice_mode_multislice ? P_OUT_CFG::DOUT_DOUTM8C : P_OUT_CFG::DOUT_DOUTM8A;
static constexpr std::array<PinConfig, 16> pin_config { {
[PIN_D0] = { output_multiplexing_mode, SLICE_A },
[PIN_D1] = { output_multiplexing_mode, SLICE_I },
[PIN_D2] = { output_multiplexing_mode, },
[PIN_D3] = { output_multiplexing_mode, },
[PIN_D4] = { output_multiplexing_mode, },
[PIN_D5] = { output_multiplexing_mode, },
[PIN_D6] = { output_multiplexing_mode, },
[PIN_D7] = { output_multiplexing_mode, },
[PIN_CLKIN] = { P_OUT_CFG::DOUT_DOUTM1, },
[PIN_CAPTURE] = { P_OUT_CFG::DOUT_DOUTM1, },
[PIN_DISABLE] = { P_OUT_CFG::GPIO_OUT, },
[PIN_DIRECTION] = { P_OUT_CFG::GPIO_OUT, },
[PIN_INVERT] = { P_OUT_CFG::GPIO_OUT, },
[PIN_DECIM0] = { P_OUT_CFG::GPIO_OUT, },
[PIN_DECIM1] = { P_OUT_CFG::DOUT_DOUTM1, },
[PIN_DECIM2] = { P_OUT_CFG::GPIO_OUT, },
} };
*/
/*
static constexpr std::array<LPC_SGPIO_OUT_MUX_CFG_Type, 16> out_mux_cfg_receive {
{ },
};
static constexpr std::array<LPC_SGPIO_OUT_MUX_CFG_Type, 16> out_mux_cfg_transmit {
{ },
};
*/
enum class P_OUT_CFG : uint8_t {
DOUT_DOUTM1 = 0x0,
DOUT_DOUTM2A = 0x1,
DOUT_DOUTM2B = 0x2,
DOUT_DOUTM2C = 0x3,
GPIO_OUT = 0x4,
DOUT_DOUTM4A = 0x5,
DOUT_DOUTM4B = 0x6,
DOUT_DOUTM4C = 0x7,
CLK_OUT = 0x8,
DOUT_DOUTM8A = 0x9,
DOUT_DOUTM8B = 0xa,
DOUT_DOUTM8C = 0xb,
};
enum class P_OE_CFG : uint8_t {
GPIO_OE = 0x0,
DOUT_OEM1 = 0x4,
DOUT_OEM2 = 0x5,
DOUT_OEM4 = 0x6,
DOUT_OEM8 = 0x7,
};
enum class CONCAT_ORDER : uint8_t {
SELF_LOOP = 0x0,
TWO_SLICES = 0x1,
FOUR_SLICES = 0x2,
EIGHT_SLICES = 0x3,
};
enum class CONCAT_ENABLE : uint8_t {
EXTERNAL_DATA_PIN = 0x0,
CONCATENATE_DATA = 0x1,
};
enum class CLK_CAPTURE_MODE : uint8_t {
RISING_CLOCK_EDGE = 0,
FALLING_CLOCK_EDGE = 1,
};
enum class PARALLEL_MODE : uint8_t {
SHIFT_1_BIT_PER_CLOCK = 0x0,
SHIFT_2_BITS_PER_CLOCK = 0x1,
SHIFT_4_BITS_PER_CLOCK = 0x2,
SHIFT_1_BYTE_PER_CLOCK = 0x3,
};
enum {
PIN_D0 = 0,
PIN_D1 = 1,
PIN_D2 = 2,
PIN_D3 = 3,
PIN_D4 = 4,
PIN_D5 = 5,
PIN_D6 = 6,
PIN_D7 = 7,
PIN_CLKIN = 8,
PIN_CAPTURE = 9,
PIN_DISABLE = 10,
PIN_DIRECTION = 11,
PIN_INVERT = 12,
PIN_SYNC_EN = 13,
PIN_P81 = 14,
PIN_P78 = 15,
};
enum class Slice : uint8_t {
A = 0,
B = 1,
C = 2,
D = 3,
E = 4,
F = 5,
G = 6,
H = 7,
I = 8,
J = 9,
K = 10,
L = 11,
M = 12,
N = 13,
O = 14,
P = 15,
};
constexpr bool slice_mode_multislice = false;
constexpr uint8_t pos_count_multi_slice = 0x1f;
constexpr uint8_t pos_count_single_slice = 0x03;
constexpr Slice slice_order[] {
Slice::A,
Slice::I,
Slice::E,
Slice::J,
Slice::C,
Slice::K,
Slice::F,
Slice::L,
Slice::B,
Slice::M,
Slice::G,
Slice::N,
Slice::D,
Slice::O,
Slice::H,
Slice::P,
};
constexpr uint32_t gpio_outreg(const Direction direction) {
return ((direction == Direction::Transmit) ? (1U << PIN_DIRECTION) : 0U) | (1U << PIN_DISABLE);
}
constexpr uint32_t gpio_oenreg(const Direction direction) {
return
(0U << PIN_P78)
| (0U << PIN_P81)
| (0U << PIN_SYNC_EN)
| (0U << PIN_INVERT)
| (1U << PIN_DIRECTION)
| (1U << PIN_DISABLE)
| (0U << PIN_CAPTURE)
| (0U << PIN_CLKIN)
| ((direction == Direction::Transmit) ? 0xffU : 0x00U)
;
}
constexpr uint32_t out_mux_cfg(const P_OUT_CFG out, const P_OE_CFG oe) {
return
(toUType(out) << 0)
| (toUType(oe) << 4)
;
}
constexpr uint32_t data_sgpio_mux_cfg(
const CONCAT_ENABLE concat_enable,
const CONCAT_ORDER concat_order
) {
return
(1U << 0)
| (0U << 1)
| (0U << 3)
| (3U << 5)
| (1U << 7)
| (0U << 9)
| (toUType(concat_enable) << 11)
| (toUType(concat_order) << 12)
;
}
constexpr uint32_t data_slice_mux_cfg(
const PARALLEL_MODE parallel_mode,
const CLK_CAPTURE_MODE clk_capture_mode
) {
return
(0U << 0)
| (toUType(clk_capture_mode) << 1)
| (1U << 2)
| (0U << 3)
| (0U << 4)
| (toUType(parallel_mode) << 6)
| (0U << 8)
;
}
constexpr uint32_t pos(
const uint32_t pos,
const uint32_t pos_reset
) {
return
(pos << 0)
| (pos_reset << 8)
;
}
constexpr uint32_t data_pos(
const bool multi_slice
) {
return pos(
(multi_slice ? pos_count_multi_slice : pos_count_single_slice),
(multi_slice ? pos_count_multi_slice : pos_count_single_slice)
);
}
constexpr CONCAT_ENABLE data_concat_enable(
const bool input_slice,
const bool single_slice
) {
return (input_slice || single_slice)
? CONCAT_ENABLE::EXTERNAL_DATA_PIN
: CONCAT_ENABLE::CONCATENATE_DATA
;
}
constexpr CONCAT_ORDER data_concat_order(
const bool input_slice,
const bool single_slice
) {
return (input_slice || single_slice)
? CONCAT_ORDER::SELF_LOOP
: CONCAT_ORDER::EIGHT_SLICES
;
}
constexpr CLK_CAPTURE_MODE data_clk_capture_mode(
const Direction direction
) {
return (direction == Direction::Transmit)
? CLK_CAPTURE_MODE::RISING_CLOCK_EDGE
: CLK_CAPTURE_MODE::RISING_CLOCK_EDGE
;
}
constexpr P_OUT_CFG data_p_out_cfg(
const bool multi_slice
) {
return (multi_slice)
? P_OUT_CFG::DOUT_DOUTM8C
: P_OUT_CFG::DOUT_DOUTM8A
;
}
static const sgpio_resources_t sgpio_resources = {
.base = { .clk = &LPC_CGU->BASE_PERIPH_CLK, .stat = &LPC_CCU1->BASE_STAT, .stat_mask = (1 << 6) },
.branch = { .cfg = &LPC_CCU1->CLK_PERIPH_SGPIO_CFG, .stat = &LPC_CCU1->CLK_PERIPH_SGPIO_STAT },
.reset = { .output_index = 57 },
};
void SGPIO::init() {
base_clock_enable(&sgpio_resources.base);
branch_clock_enable(&sgpio_resources.branch);
peripheral_reset(&sgpio_resources.reset);
}
void SGPIO::configure(const Direction direction) {
disable_all_slice_counters();
// Set data pins as input, temporarily.
LPC_SGPIO->GPIO_OENREG = gpio_oenreg(Direction::Receive);
// Now that data pins are inputs, safe to change CPLD direction.
LPC_SGPIO->GPIO_OUTREG = gpio_outreg(direction);
LPC_SGPIO->OUT_MUX_CFG[ 8] = out_mux_cfg(P_OUT_CFG::DOUT_DOUTM1, P_OE_CFG::GPIO_OE);
LPC_SGPIO->OUT_MUX_CFG[ 9] = out_mux_cfg(P_OUT_CFG::DOUT_DOUTM1, P_OE_CFG::GPIO_OE);
LPC_SGPIO->OUT_MUX_CFG[10] = out_mux_cfg(P_OUT_CFG::GPIO_OUT, P_OE_CFG::GPIO_OE);
LPC_SGPIO->OUT_MUX_CFG[11] = out_mux_cfg(P_OUT_CFG::GPIO_OUT, P_OE_CFG::GPIO_OE);
LPC_SGPIO->OUT_MUX_CFG[12] = out_mux_cfg(P_OUT_CFG::GPIO_OUT, P_OE_CFG::GPIO_OE);
LPC_SGPIO->OUT_MUX_CFG[13] = out_mux_cfg(P_OUT_CFG::GPIO_OUT, P_OE_CFG::GPIO_OE);
LPC_SGPIO->OUT_MUX_CFG[14] = out_mux_cfg(P_OUT_CFG::DOUT_DOUTM1, P_OE_CFG::GPIO_OE);
LPC_SGPIO->OUT_MUX_CFG[15] = out_mux_cfg(P_OUT_CFG::GPIO_OUT, P_OE_CFG::GPIO_OE);
const auto data_out_mux_cfg = out_mux_cfg(data_p_out_cfg(slice_mode_multislice), P_OE_CFG::GPIO_OE);
for(size_t i=0; i<8; i++) {
LPC_SGPIO->OUT_MUX_CFG[i] = data_out_mux_cfg;
}
// Now that output enable sources are set, enable data bus in correct direction.
LPC_SGPIO->GPIO_OENREG = gpio_oenreg(direction);
const auto slice_gpdma = Slice::H;
const size_t slice_count = slice_mode_multislice ? 8 : 1;
const auto clk_capture_mode = data_clk_capture_mode(direction);
const auto single_slice = !slice_mode_multislice;
uint32_t slice_enable_mask = 0;
for(size_t i=0; i<slice_count; i++) {
const auto slice = slice_order[i];
const auto slice_index = toUType(slice);
const auto input_slice = (i == 0) && (direction != Direction::Transmit);
const auto concat_order = data_concat_order(input_slice, single_slice);
const auto concat_enable = data_concat_enable(input_slice, single_slice);
LPC_SGPIO->SGPIO_MUX_CFG[slice_index] = data_sgpio_mux_cfg(
concat_enable,
concat_order
);
LPC_SGPIO->SLICE_MUX_CFG[slice_index] = data_slice_mux_cfg(
PARALLEL_MODE::SHIFT_1_BYTE_PER_CLOCK,
clk_capture_mode
);
LPC_SGPIO->PRESET[slice_index] = 0;
LPC_SGPIO->COUNT[slice_index] = 0;
LPC_SGPIO->POS[slice_index] = data_pos(slice_mode_multislice);
LPC_SGPIO->REG[slice_index] = 0;
LPC_SGPIO->REG_SS[slice_index] = 0;
slice_enable_mask |= (1U << slice_index);
}
if( !slice_mode_multislice ) {
const auto slice_index = toUType(slice_gpdma);
LPC_SGPIO->SGPIO_MUX_CFG[slice_index] = data_sgpio_mux_cfg(
CONCAT_ENABLE::CONCATENATE_DATA,
CONCAT_ORDER::SELF_LOOP
);
LPC_SGPIO->SLICE_MUX_CFG[slice_index] = data_slice_mux_cfg(
PARALLEL_MODE::SHIFT_1_BIT_PER_CLOCK,
clk_capture_mode
);
LPC_SGPIO->PRESET[slice_index] = 0;
LPC_SGPIO->COUNT[slice_index] = 0;
LPC_SGPIO->POS[slice_index] = pos(0x1f, 0x1f);
LPC_SGPIO->REG[slice_index] = 0x11111111;
LPC_SGPIO->REG_SS[slice_index] = 0x11111111;
slice_enable_mask |= (1 << slice_index);
}
set_slice_counter_enables(slice_enable_mask);
}
} /* namespace baseband */