/* * Copyright (C) 2016 Jared Boone, ShareBrained Technology, Inc. * Copyright (C) 2016 Furrtek * * This file is part of PortaPack. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include "proc_replay.hpp" #include "sine_table_int8.hpp" #include "portapack_shared_memory.hpp" #include "event_m4.hpp" #include "utility.hpp" ReplayProcessor::ReplayProcessor() { channel_filter_low_f = taps_200k_decim_1.low_frequency_normalized * 1000000; channel_filter_high_f = taps_200k_decim_1.high_frequency_normalized * 1000000; channel_filter_transition = taps_200k_decim_1.transition_normalized * 1000000; spectrum_samples = 0; channel_spectrum.set_decimation_factor(1); configured = false; } void ReplayProcessor::execute(const buffer_c8_t& buffer) { /* 4MHz, 2048 samples */ if (!configured) return; // File data is in C16 format, we need C8 // File samplerate is 500kHz, we're at 4MHz // iq_buffer can only be 512 C16 samples (RAM limitation) // To fill up the 2048-sample C8 buffer, we need: // 2048 samples * 2 bytes per sample = 4096 bytes // Since we're oversampling by 4M/500k = 8, we only need 2048/8 = 256 samples from the file and duplicate them 8 times each // So 256 * 4 bytes per sample (C16) = 1024 bytes from the file if( stream ) { const size_t bytes_to_read = sizeof(*buffer.p) * 2 * (buffer.count / 8); // *2 (C16), /8 (oversampling) should be == 1024 bytes_read += stream->read(iq_buffer.p, bytes_to_read); } // Fill and "stretch" for (size_t i = 0; i < buffer.count; i++) { if (i & 3) { buffer.p[i] = buffer.p[i - 1]; } else { auto re_out = iq_buffer.p[i >> 3].real() >> 8; auto im_out = iq_buffer.p[i >> 3].imag() >> 8; buffer.p[i] = { (int8_t)re_out, (int8_t)im_out }; } } spectrum_samples += buffer.count; if( spectrum_samples >= spectrum_interval_samples ) { spectrum_samples -= spectrum_interval_samples; channel_spectrum.feed(iq_buffer, channel_filter_low_f, channel_filter_high_f, channel_filter_transition); txprogress_message.progress = bytes_read; // Inform UI about progress txprogress_message.done = false; shared_memory.application_queue.push(txprogress_message); } } void ReplayProcessor::on_message(const Message* const message) { switch(message->id) { case Message::ID::UpdateSpectrum: case Message::ID::SpectrumStreamingConfig: channel_spectrum.on_message(message); break; case Message::ID::SamplerateConfig: samplerate_config(*reinterpret_cast(message)); break; case Message::ID::ReplayConfig: configured = false; bytes_read = 0; replay_config(*reinterpret_cast(message)); break; // App has prefilled the buffers, we're ready to go now case Message::ID::FIFOData: configured = true; break; default: break; } } void ReplayProcessor::samplerate_config(const SamplerateConfigMessage& message) { baseband_fs = message.sample_rate; baseband_thread.set_sampling_rate(baseband_fs); spectrum_interval_samples = baseband_fs / spectrum_rate_hz; } void ReplayProcessor::replay_config(const ReplayConfigMessage& message) { if( message.config ) { stream = std::make_unique(message.config); // Tell application that the buffers and FIFO pointers are ready, prefill shared_memory.application_queue.push(sig_message); } else { stream.reset(); } } int main() { EventDispatcher event_dispatcher { std::make_unique() }; event_dispatcher.run(); return 0; }