/* * Copyright 2017 Dominic Spill * * This file is part of HackRF. * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2, or (at your option) * any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; see the file COPYING. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, * Boston, MA 02110-1301, USA. */ #include #include #include #include #include #ifndef bool typedef int bool; #define true 1 #define false 0 #endif #define CLOCK_UNDEFINED 0xFF #define REGISTER_INVALID 32767 int parse_int(char* s, uint8_t* const value) { uint_fast8_t base = 10; char* s_end; long long_value; if( strlen(s) > 2 ) { if( s[0] == '0' ) { if( (s[1] == 'x') || (s[1] == 'X') ) { base = 16; s += 2; } else if( (s[1] == 'b') || (s[1] == 'B') ) { base = 2; s += 2; } } } s_end = s; long_value = strtol(s, &s_end, base); if( (s != s_end) && (*s_end == 0) ) { *value = (uint8_t)long_value; return HACKRF_SUCCESS; } else { return HACKRF_ERROR_INVALID_PARAM; } } int si5351c_read_register(hackrf_device* device, const uint16_t register_number) { uint16_t register_value; int result = hackrf_si5351c_read(device, register_number, ®ister_value); if( result == HACKRF_SUCCESS ) { printf("[%3d] -> 0x%02x\n", register_number, register_value); } else { printf("hackrf_si5351c_read() failed: %s (%d)\n", hackrf_error_name(result), result); } return result; } int si5351c_write_register( hackrf_device* device, const uint16_t register_number, const uint16_t register_value ) { int result = HACKRF_SUCCESS; result = hackrf_si5351c_write(device, register_number, register_value); if( result == HACKRF_SUCCESS ) { printf("0x%2x -> [%3d]\n", register_value, register_number); } else { printf("hackrf_max2837_write() failed: %s (%d)\n", hackrf_error_name(result), result); } return result; } #define SI5351C_CLK_POWERDOWN (1<<7) #define SI5351C_CLK_INT_MODE (1<<6) #define SI5351C_CLK_PLL_SRC (1<<5) #define SI5351C_CLK_INV (1<<4) #define SI5351C_CLK_SRC_XTAL 0 #define SI5351C_CLK_SRC_CLKIN 1 #define SI5351C_CLK_SRC_MULTISYNTH_0_4 2 #define SI5351C_CLK_SRC_MULTISYNTH_SELF 3 void print_clk_control(uint16_t clk_ctrl) { uint8_t clk_src, clk_pwr; printf("\tclock control = "); if(clk_ctrl & SI5351C_CLK_POWERDOWN) printf("Down, "); else printf("Up, "); if(clk_ctrl & SI5351C_CLK_INT_MODE) printf("Int Mode, "); else printf("Frac Mode, "); if(clk_ctrl & SI5351C_CLK_PLL_SRC) printf("PLL src B, "); else printf("PLL src A, "); if(clk_ctrl & SI5351C_CLK_INV) printf("Inverted, "); clk_src = (clk_ctrl >> 2) & 0x3; switch (clk_src) { case 0: printf("XTAL, "); break; case 1: printf("CLKIN, "); break; case 2: printf("MULTISYNTH 0 4, "); break; case 3: printf("MULTISYNTH SELF, "); break; } clk_pwr = clk_ctrl & 0x3; switch (clk_pwr) { case 0: printf("2 mA\n"); break; case 1: printf("4 mA\n"); break; case 2: printf("6 mA\n"); break; case 3: printf("8 mA\n"); break; } } int si5351c_read_multisynth_config(hackrf_device* device, const uint_fast8_t ms_number) { uint_fast8_t i, reg_base, reg_number; uint16_t parameters[8], clk_control; uint32_t p1,p2,p3,r_div; uint_fast8_t div_lut[] = {1,2,4,8,16,32,64,128}; int result; printf("MS%d:\n", ms_number); result = hackrf_si5351c_read(device, 16+ms_number, &clk_control); if( result != HACKRF_SUCCESS ) { return result; } print_clk_control(clk_control); if(ms_number <6){ reg_base = 42 + (ms_number * 8); for(i=0; i<8; i++) { reg_number = reg_base + i; result = hackrf_si5351c_read(device, reg_number, ¶meters[i]); if( result != HACKRF_SUCCESS ) { return result; } } p1 = ((parameters[2] & 0x03) << 16) | (parameters[3] << 8) | parameters[4]; p2 = ((parameters[5] & 0x0F) << 16) | (parameters[6] << 8) | parameters[7]; p3 = ((parameters[5] & 0xF0) << 12) | (parameters[0] << 8) | parameters[1]; r_div = (parameters[2] >> 4) & 0x7; printf("\tp1 = %u\n", p1); printf("\tp2 = %u\n", p2); printf("\tp3 = %u\n", p3); if(p3) printf("\tOutput (800Mhz PLL): %#.10f Mhz\n", ((double)800 / (double)(((double)p1*p3 + p2 + 512*p3)/(double)(128*p3))) / div_lut[r_div] ); } else { // MS6 and 7 are integer only unsigned int parms; reg_base = 90; for(i=0; i<3; i++) { uint_fast8_t reg_number = reg_base + i; int result = hackrf_si5351c_read(device, reg_number, ¶meters[i]); if( result != HACKRF_SUCCESS ) { return result; } } r_div = (ms_number == 6) ? parameters[2] & 0x7 : (parameters[2] & 0x70) >> 4 ; parms = (ms_number == 6) ? parameters[0] : parameters[1]; printf("\tp1_int = %u\n", parms); if(parms) printf("\tOutput (800Mhz PLL): %#.10f Mhz\n", (800.0f / parms) / div_lut[r_div] ); } printf("\toutput divider = %u\n", div_lut[r_div]); return HACKRF_SUCCESS; } int si5351c_read_configuration(hackrf_device* device) { uint_fast8_t ms_number; int result; for(ms_number=0; ms_number<8; ms_number++) { result = si5351c_read_multisynth_config(device, ms_number); if( result != HACKRF_SUCCESS ) { return result; } } return HACKRF_SUCCESS; } static void usage() { printf("hackrf_clock - HackRF clock configuration utility\n"); printf("Usage:\n"); printf("\t-h, --help: this help\n"); printf("\t-r, --read : read settings for clock_num\n"); printf("\t-a, --all: read settings for all clocks\n"); printf("\t-o, --clkout : enable/disable CLKOUT\n"); printf("\t-d, --device : Serial number of desired HackRF.\n"); printf("\nExamples:\n"); printf("\thackrf_clock -r 3 : prints settings for CLKOUT\n"); } static struct option long_options[] = { { "help", no_argument, 0, 'h' }, { "read", required_argument, 0, 'r' }, { "all", no_argument, 0, 'a' }, { "clkout", required_argument, 0, 'o' }, { "device", required_argument, 0, 'd' }, { 0, 0, 0, 0 }, }; int main(int argc, char** argv) { hackrf_device* device = NULL; int opt, option_index = 0; bool read = false; uint8_t clock = CLOCK_UNDEFINED; bool clkout = false; uint8_t clkout_enable; const char* serial_number = NULL; int result = hackrf_init(); if(result) { printf("hackrf_init() failed: %s (%d)\n", hackrf_error_name(result), result); return EXIT_FAILURE; } while( (opt = getopt_long(argc, argv, "r:ao:d:h?", long_options, &option_index)) != EOF ) { switch( opt ) { case 'r': read = true; result = parse_int(optarg, &clock); break; case 'a': read = true; break; case 'o': clkout = true; result = parse_int(optarg, &clkout_enable); break; case 'd': serial_number = optarg; break; case 'h': case '?': usage(); return EXIT_SUCCESS; default: fprintf(stderr, "unknown argument '-%c %s'\n", opt, optarg); usage(); return EXIT_FAILURE; } if(result != HACKRF_SUCCESS) { printf("argument error: %s (%d)\n", hackrf_error_name(result), result); usage(); return EXIT_FAILURE; } } if(!clkout && !read) { fprintf(stderr, "Either read or enable CLKOUT option must be specified.\n"); usage(); return EXIT_FAILURE; } result = hackrf_open_by_serial(serial_number, &device); if(result) { printf("hackrf_open() failed: %s (%d)\n", hackrf_error_name(result), result); return EXIT_FAILURE; } if(clkout) { result = hackrf_set_clkout_enable(device, clkout_enable); if(result) { printf("hackrf_set_clkout_enable() failed: %s (%d)\n", hackrf_error_name(result), result); return EXIT_FAILURE; } } if(read) { if(clock == CLOCK_UNDEFINED) si5351c_read_configuration(device); else { printf("%d\n", clock); si5351c_read_multisynth_config(device, clock); } } result = hackrf_close(device); if(result) { printf("hackrf_close() failed: %s (%d)\n", hackrf_error_name(result), result); return EXIT_FAILURE; } hackrf_exit(); return EXIT_SUCCESS; }