181 lines
3.8 KiB
C
Raw Normal View History

2022-09-22 09:26:57 -07:00
#include "display.h"
#include "gpio_lpc.h"
#include "hackrf_core.h"
#include <libopencm3/lpc43xx/scu.h>
#include <libopencm3/lpc43xx/ssp.h>
#include <stdbool.h>
#include <stdint.h>
#include <string.h>
static void delayms(const uint32_t milliseconds)
{
/* NOTE: Naively assumes 204 MHz instruction cycle clock and five instructions per count */
delay(milliseconds * 40800);
}
static struct gpio_t gpio_lcd_cs = GPIO(4, 12); /* P9_0 */
static struct gpio_t gpio_lcd_bl_en = GPIO(0, 8); /* P1_1 */
static struct gpio_t gpio_lcd_reset = GPIO(5, 17); /* P9_4 */
/**************************************************************************/
/* Utility routines to manage nokia display */
/**************************************************************************/
static void rotate(void);
static uint8_t lcdBuffer[RESX * RESY];
static bool isTurned;
static void select()
{
/*
* The LCD requires 9-Bit frames
* Freq = PCLK / (CPSDVSR * [SCR+1])
* We want 120ns / bit -> 8.3 MHz.
* SPI1 BASE CLOCK is expected to be 204 MHz.
* 204 MHz / ( 12 * (1 + 1)) = 8.5 MHz
*
* Set CPSDVSR = 12
*/
uint8_t serial_clock_rate = 1;
uint8_t clock_prescale_rate = 12;
ssp_init(LCD_SSP, SSP_DATA_9BITS, SSP_FRAME_SPI, SSP_CPOL_0_CPHA_0,
serial_clock_rate, clock_prescale_rate, SSP_MODE_NORMAL,
SSP_MASTER, SSP_SLAVE_OUT_ENABLE);
gpio_clear(&gpio_lcd_cs);
}
static void deselect()
{
gpio_set(&gpio_lcd_cs);
}
static void write(uint8_t cd, uint8_t data)
{
uint16_t frame = 0x0;
frame = cd << 8;
frame |= data;
ssp_transfer(LCD_SSP, frame);
}
void rad1o_lcdInit(void)
{
gpio_output(&gpio_lcd_bl_en);
gpio_output(&gpio_lcd_reset);
gpio_output(&gpio_lcd_cs);
/* prepare SPI */
SETUPpin(LCD_DI);
SETUPpin(LCD_SCK);
// Reset the display
gpio_clear(&gpio_lcd_reset);
delayms(100);
gpio_set(&gpio_lcd_reset);
delayms(100);
select();
/* The controller is a PCF8833 - documentation can be found online. */
static uint8_t initseq_d[] = {
0x11, // SLEEP_OUT (wake up)
0x3A, 2, // mode 8bpp (2= 8bpp, 3= 12bpp, 5= 16bpp)
0x36, 0b11000000, // my,mx,v,lao,rgb,x,x,x
0x25, 0x3a, // set contrast
0x29, // display on
0x03, // BSTRON (booster voltage)
0x2A, 1, RESX, 0x2B, 1, RESY
};
uint16_t initseq_c = ~(/* commands: 1, data: 0 */
(1 << 0) | (1 << 1) | (0 << 2) | (1 << 3) |
(0 << 4) | (1 << 5) | (0 << 6) | (1 << 7) |
(1 << 8) | (1 << 9) | (0 << 10) | (0 << 11) |
(1 << 12) | (0 << 13) | (0 << 14) | 0);
write(0, 0x01); /* most color displays need the pause */
delayms(10);
size_t i = 0;
while (i < sizeof(initseq_d)) {
write(initseq_c & 1, initseq_d[i++]);
initseq_c = initseq_c >> 1;
}
deselect();
rad1o_lcdFill(0xff); /* Clear display buffer */
rotate();
gpio_set(&gpio_lcd_bl_en);
}
void rad1o_lcdDeInit(void)
{
gpio_clear(&gpio_lcd_bl_en);
rad1o_lcdFill(0xff);
rad1o_lcdDisplay();
}
void rad1o_lcdFill(uint8_t f)
{
memset(lcdBuffer, f, RESX * RESY);
}
void rad1o_lcdSetPixel(uint8_t x, uint8_t y, uint8_t f)
{
if (x > RESX || y > RESY)
return;
lcdBuffer[y * RESX + x] = f;
}
static uint8_t getPixel(uint8_t x, uint8_t y)
{
return lcdBuffer[y * RESX + x];
}
uint8_t *rad1o_lcdGetBuffer(void)
{
return lcdBuffer;
}
void rad1o_lcdDisplay(void)
{
select();
uint16_t x, y;
/* set (back) to 8 bpp mode */
write(TYPE_CMD, 0x3a);
write(TYPE_DATA, 2);
write(TYPE_CMD, 0x2C); // memory write (RAMWR)
for (y = 0; y < RESY; y++) {
for (x = 0; x < RESX; x++) {
write(TYPE_DATA, getPixel(x, y));
};
}
deselect();
}
static void rotate(void)
{
select();
write(TYPE_CMD, 0x36); // MDAC-Command
if (isTurned) {
write(TYPE_DATA, 0b01100000); // my,mx,v,lao,rgb,x,x,x
isTurned = true;
} else {
write(TYPE_DATA, 0b11000000); // my,mx,v,lao,rgb,x,x,x
isTurned = false;
}
deselect();
rad1o_lcdDisplay();
}